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Computational study of the texture formation in mesophase
pitch-based carbon fibres

SHUJUAN HONG and PHILIP K. CHAN*

Department of Chemical Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3,

Canada

(Received 27 January 2005; in final form 10 May 2005; accepted 12 May 2005 )

This paper studies the thermal relaxation phenomena after melt-extrusion of a rigid discotic
uniaxial nematic mesophase pitch using mathematical modelling and computer simulation.
The Ericksen and Landau–de Gennes continuum theories are used to investigate the structure
development and texture formation across mesophase pitch-based carbon fibres. The two-
dimensional model captures five types of transverse patterns, which match the commonly
observed textures for mesophase pitch-based carbon fibres. They are: random, zig-zagged
radial, radial, quasi-onion and onion. These textures represent the various combinations
possible from the interplay between structure (i.e. texture) development and cooling during
the fibre spinning process. During the thermal relaxation after the cessation of extensional
flow the discotic nematic molecules store elastic free energy decays. The distorted nematic
molecular profiles reorient to release the stored elastic free energy. The difference in time
scales for molecular reorientation and thermal relaxation result in different transverse
textures. The rate at which the fibres are cooled is the main factor in controlling the structure
development. A slow cooling rate would permit the nematic discotic molecules to reorient to a
well-developed (radial or onion) texture. The random texture is a result of rapid quenching.
The numerical results are consistent with published experimental observations.

1. Introduction

High performance mesophase pitch-based carbon fibres

are made from liquid crystalline materials composed of

nematic discotic molecules. These molecules can be

aligned in certain directions to form well defined

structures [1–7]. It is these well-defined structures that

give these materials excellent mechanical and transport

properties, and provide carbon fibres with wide applica-

tions ranging from the aerospace industry to sporting

goods [5–10]. The transport properties, transverse

structure development, and texture formation have been

the subject of numerous experimental and theoretical

studies. Previous work [9–14] has indicated that a well-

defined structure is created during the melt spinning

process. Spinning parameters such as melt spinning

temperature, melt viscosity, and spinneret structure all

affect the texture formation in carbon fibres [6, 8, 14].

Successful manufacturing of high performance car-

bon fibres from mesophase pitch depends on the control

of texture formation, i.e. molecular orientation. The

different orientations of the discotic molecules give rise

to various cross-sectional textures. The most commonly

observed are the radial, onion and random textures

[1–3]. Mesophase carbonaceous fibres with random

textures tend to exhibit higher tensile and compressive

properties. By contrast, fibres with radial transverse

textures have superior transport properties, such as

thermal conductivity [8, 15]. Although substantial

progress has been made during the past four

decades, the structure development and texture

formation for carbon fibres are still not completely

understood.

Theoretical studies using available liquid crystal

continuum theories to model and simulate the structure

development and texture formation have been per-

formed by Edie et al. [6, 14] and Rey et al. [16–23].

Nematic discotic liquid crystal molecules tend to align

their short axis along a common direction, defined by

a unit vector called the director n. The degree of

alignment along the director is defined as the scalar

order parameter S [24–29]. Edie et al. [6, 14] modelled

mesophase pitch molecules as rigid discotic nematics

and studied their molecular orientation during fully

developed channel flow. Their numerical results were

consistent with pitch observed under a polarizing

optical microscope. Singh and Rey [16–18] examined

continuum theories such as the Leslie–Ericksen theory*Corresponding author. Email: p4chan@ryerson.ca
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developed for nematic liquid crystals, and proposed

that the theories can be extended to low molecular mass

disc-like liquid crystal molecules to describe the flow

behaviour of mesophase pitch. Wang and Rey [30]

approximated the melt pitch to be a nematic discotic

liquid crystal and assumed the melt spinning process to

be an isothermal, incompressible, uniaxial, extensional

flow. They modelled the dynamic behaviour of nematic

discotic liquid crystal molecules using the Leslie–

Ericksen and Frank elastic free energy theories and

assumed a homogeneous order parameter S. Their

simulation results concluded that: (1) minimizing the

Frank elastic free energy is the mechanism of mode

selection between the radial and onion textures, and (2)

the onion (radial) texture forms at high or low

temperatures, while a random texture is created in an

intermediate temperature range. White and Buechler

[31], however, suggested that the radial texture is

formed at low viscosity and slow cooling, while the

random texture would form at high viscosity and rapid

quenching. Intermediate textures result from partial

annihilation of disclinations.

Melt spinning is a complex non-isothermal process

involving uniaxial flow, cooling and solidification. After

leaving the spinneret, the melt pitch is cooled and

solidified to form a fibre. This thermal relaxation

involves heat transfer from the melt pitch to the cooling

medium, which creates a radial temperature gradient

across the fibre. Moreover, it is also during this thermal

relaxation that the flow-induced structure starts to relax

from a stressed high energy to a low energy state with a

well defined structure. Since the material properties of

carbon fibres depend on the molecular structure, it is

crucial to understand the time evolution of the director

and order parameter during the thermal relaxation

period. A survey of the literature shows that this

understanding is far from complete. The aim of this

paper is to investigate numerically the structure devel-

opment and texture formation during the thermal

relaxation after cessation of uniaxial shear flow for

carbonaceous mesophase pitch. We use the Ericksen

[32] continuum theory incorporating the Landau–de

Gennes free energy density [25]. This combination of

liquid crystalline theory has already been used success-

fully by Chan and Rey [33] to study the banded texture

formation in liquid crystalline polymers after cessation

of shear flow.

The objectives of this paper are: (1) to present results

from a numerical study on the thermal relaxation

phenomena after steady extensional flow for a model

incompressible uniaxial nematic pitch phase composed

of rigid disc-like molecules using the Ericksen and

Landau–de Gennes nematic continuum theories, (2) to

characterize the structure development and texture

formation during thermal relaxation after cessation of

extensional flow and (3) to examine the effects of

mesophase pitch material properties and process con-

ditions on the texture formation and evolution.

The next section outlines the Ericksen and Landau–

de Gennes continuum theories and details the develop-

ment of the governing equations. The results are

presented and discussed in § 3 and the conclusions are

given in § 4.

˙2. Continuum theories and problem formulation

In Cartesian tensorial notation for an incompressible

fluid, the linear momentum balance equation is

r &V~Fz+:t: ð1Þ

The constitutive equation for the stress tensor t,

according to the Ericksen theory [32], is given as

t~{pd{
LfL

L+n
: +nð ÞT{

LfL

L+S
+S

zb
S

1 Sð Þ &S nnzaS
1 Sð Þ nn : Að Þnn

zaS
2 Sð ÞnNzaS

3 Sð ÞNnzaS
4 Sð ÞA

zaS
5 Sð Þnn:AzaS

6 Sð ÞA:nn;

ð2Þ

where the kinematic quantities are defined as follows:

A~
1

2
+Vð ÞTz+V

h i
ð3 aÞ

N~ &n{V:n ð3 bÞ

V~
1

2
+Vð ÞT{+V

h i
: ð3 cÞ

In the above equations, r is the fluid density, V is the

velocity, and F is the external body force per unit

volume. The superimposed dot denotes the material

time derivative. The Leslie viscosity coefficients

aS
i

� �
, i~1, . . . , 6, and bS

1 all depend on S; p is the

pressure, and d is the unit tensor. In addition, N is

the angular velocity of the director relative to that of the

fluid, A is the rate of deformation tensor, and V is

the vorticity tensor. The ijth Cartesian component of +n

and +V are Lnj/Lxi and LVj/Lxi, respectively.

The Landau–de Gennes free energy density of the

nematic material is defined as follows [25]:
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fL~fo Tð Þz 3

4
A T{Tz

NI

� �
S2z

1

4
BS3z

9

16
CS4

z
3

4
L1z

1

6
L2

� �
+Sð Þ2z 3

8
L2 n:+Sð Þ2

z
9

4
S2 L1z

1

2
L2

� �
+:nð Þ2zL1 n:+|nð Þ2

�

z L1z
1

2
L2

� �
n|+|nð Þ2

�

z
3

2
L2S +:nð Þ| n:+Sð Þz 3

4
L2S n|+|nð Þ:+S

ð4Þ

where fo (T) is the isotropic free energy density at

temperature T, and A, B, C, L1, L2 are material

constants. T z
NI is a temperature slightly below the

clearing temperature TNI, where the first order nematic–

isotropic phase transition occurs. In this paper, we

assume T z
NI ~TNI for simplicity. Equation (4) contains

four groups of terms. The first four terms contain only

the scalar order parameter. The next two terms account

for the spatial variations in S. The following three terms

account for director spatial variation, and is expanded

as such to resemble the Frank–Oseen–Zocher free

energy density, which is expressed as [24, 27]:

fd~
1

2
K1 +:nð Þ2zK2 n:+|nð Þ2zK3 n|+|nð Þ2
h i

: ð5Þ

It should be noted that, to second order in the Landau–

de Gennes expression, there are only two independent

elastic constants, whereas there are three independent

Frank elastic constants, i.e. K1 (for splay), K2 (for twist)

and K3 (for bend) in the Frank–Oseen–Zocher free

energy density. For rod-like nematic liquid crystals,

K3 is larger than K1 and K2, while for disc-like

nematic liquid crystals K2 is larger than K1 and K3.

While the Frank elastic constants decrease quickly with

increasing temperature, the Landau–de Gennes elastic

coefficients L1 and L2 are independent of temperature.

The relationships between the Landau elastic coeffi-

cients and the Frank elastic constants are as follows

[34]:

L1~
K2

2S2
ð6 aÞ

L2~
K{K2

2S2
ð6 bÞ

K~K1~K3: ð6 cÞ

The last two terms in equation (4) represent the

interaction between S and n and their spatial

gradients. In this paper these four groups of terms are

conveniently called the molecular free energy density fS,

the molecular elastic free energy density fe, the Frank

elastic free energy density fd, and the coupling elastic

free energy density fC, respectively [33]. The coefficients

A, B, and C are not known for a nematic discotic liquid

crystal. It is then convenient to replace the terms

introduced by these coefficients in the free energy

density by the following Doi expression [35]:

fS~kBuT
1

2
1{

1

3
U

� �
S2{

1

9
US3z

1

6
US4

� �
ð7Þ

where kB is the Boltzmann constant, u is the disc

concentration, and U is the dimensionless nematic

potential expressed as:

U~
3TNI

T
: ð8Þ

In equation (8), TNI is the nematic–isotropic transition

temperature, and T is the absolute temperature of the

fibre. Since heat loss from the carbon fibre exiting

the spinneret is through the surface and the fibre

diameter is on the micron scale, it is plausible to assume

that the dominant heat conduction direction is along

the radial direction of the fibre. This means that it is

also plausible to assume an effective thermal conduc-

tivity kth for the mesophase carbonaceous fibre and to

use the following form for the energy balance for heat

conduction [36]:

rCp

LT

Lt
~kth+2T ð9Þ

where Cp is the heat capacity of the nematic phase at

constant pressure per unit mass, and r is the nematic

phase density.

According to the Ericksen [32] continuum theory, the

balance equations for n and S are defined, respectively,

as follows:

&n~V:nz
cS

2 Sð Þ
cS

1 Sð Þ
n nT :A:n
� �

{A:n
	 


{
1

cS
1 Sð Þ

dfL

dn
ð10 aÞ

&S~{
1

bS
2 Sð Þ

dfL

dS
{

bS
1 Sð Þ

bS
2 Sð Þ

nT:A:n ð10 bÞ

where cS
1 , cS

2 and bS
1 , bS

2 are viscosity coefficients that

depend on S. In addition,

c1~a3{a2 ð11 aÞ

c2~a6{a5~a3za2: ð11 bÞ

The equality in equation (11 b) is due to Parodi [37];

therefore, there are only five independent Leslie

viscosity coefficients for nematic liquid crystal flow. In
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the Ericksen continuum theory all aS
i vary with the

scalar order parameter S; these relationships are listed

in the Appendix. dfL/d(*) denotes the functional

derivative of fL with respect to (*).

The rest of this section consists of the development of

the partial differential equations that govern the time

evolution of the temperature, the director, and the

scalar order parameter within the carbonaceous meso-

phase fibre during the cooling process after it is pulled

out of the spinneret. Figure 1 shows the schematic

representation of the disc-like molecules within a section

of a carbonaceous mesophase fibre of radius R, and the

definition of the coordinate systems. The polar coordi-

nate r–w is expressed with dashed lines. The cartesian

coordinate x–y is expressed with solid lines. h is the

planar director orientation angle measured in radians,

which is the angle between director n and polar r at

point (x, y).

We assume in this two-dimensional study: (1) the

inertia of the director is negligible and neglected, (2)

there is no external force F, (3) the director remains

within the xy-plane, and (4) backflows are negligible

and neglected. The director field is defined as

n~ cos h, sin h, 0ð Þ ð12Þ

where the unit length constraint, n?n51, is automati-

cally satisfied. Within this planar two-dimensional

approximation, the three unknowns are as follows:

T~T x, y, tð Þ, h~h x, y, tð Þ, S~S x, y, tð Þ: ð13 a; b; cÞ

The three equations that govern the behaviour of

temperature T, director orientation h, and the scalar

order parameter S are the energy balance equation of

the system [see equation (9)], the z-component of the

angular momentum balance [see equation (10 a)], and

the scalar orientational order balance [see equa-

tion (10 b)]. They are, respectively:

rCp
LT

Lt
~kth

L2T

Lx2
z

L2T

Ly2

 !
ð14 aÞ

{c1

Lh

Lt
~k1

Lh

Lx
z

Lh

Ly

� �
LS

Lx
z

LS

Ly

� �
zk2

L2h

Lx2
z

L2h

Ly2

 !

zk3
LS

Lx

LS

Ly
zk4

LS

Lx

� �2

zk5
LS

Ly

� �2

zk6
L2S

Lx2
zk7

L2S

Ly2
zk8

Lh

Lx
{

Lh

Ly

� �
LS

Lx
{

LS

Ly

� �
ð14 bÞ

{c1

LS

Lt
~kBuT 1{

TNI

T

� �
S{

TNI

T
S2z2

TNI

T
S3

� �
3z6S2
� �

zk9
Lh

Lx

� �2

z
Lh

Ly

� �2
" #

zk10
L2S

Lx2
z

L2S

Ly2

 !

zk11
Lh

Lx

LS

Lx
zk12

Lh

Ly

LS

Ly
zk13

L2S

Lx2
zk14

L2S

Ly2

zk15
L2h

Lx2
zk16

L2h

Ly2
zk17

Lh

Lx

� �2

zk18
Lh

Ly

� �2

ð14 cÞ

where the elastic functions {ki}, i51, …, 18, are given in

the Appendix.

The dimensionless equations are obtained by scaling

the temperature with TNI, the elastic terms with K, the

viscosity terms with c1, the distances x and y with R,

and the time with c1R2/K. By doing this, the elastic

functions become k�i ~ki=K . The superscript asterisk

denotes a dimensionless variable. The equations then

become the following set of dimensionless non-linear

partial differential equations:

LT�

Lt�
~a

L2T�

Lx�2 z
L2T�

Ly�2

 !
ð15 aÞ

{
Lh

Lt�
~k�1

Lh

Lx�
z

Lh

Ly�

� �
LS

Lx�
z

LS

Ly�

� �
zk�2

L2h

Lx�2
z

L2h

Ly�2

 !

zk�3
LS

Lx�
LS

Ly�
zk�4

LS

Lx�

� �2

zk�5
LS

Ly�

� �2

zk�6
L2S

Lx�2 zk�7
L2S

Ly�2 zk�8
Lh

Lx�
{

Lh

Ly�

� �
LS

Lx�
{

LS

Ly�

� �
ð15 bÞ

Figure 1. Schematic representation of the disc-like molecules
within a section of a carbonaceous mesophase fibre of radius
R, and the definition of the coordinate systems. The polar
coordinates r–w are expressed by dashed lines. The cartesian
coordinates x–y are expressed by solid lines. h is the planar
director orientation angle measured in radians, which is the
angle between director n and polar r at point (x, y).
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{
LS

Lt�
~b T�{1ð ÞS{S2z2S3
	 


3z6S2
� �

zk�9
Lh

Lx�

� �2

z
Lh

Ly�

� �2
" #

zk�10

L2S

Lx�2
z

L2S

Ly�2

 !

zk�11

Lh

Lx�
LS

Lx�
zk�12

Lh

Ly�
LS

Ly�
zk�13

L2S

Lx�2
zk�14

L2S

Ly�2

zk�15

L2h

Lx�2
zk�16

L2h

Ly�2
zk�17

Lh

Lx�

� �2

zk�18

Lh

Ly�

� �2

:

ð15 cÞ

Equation (15) introduces a dimensionless thermal diffu-

sivity a and a dimensionless characteristic molecular

free energy b, which are expressed as follow:

a~
kth

rCp

c1

K
ð16Þ

and

b~
kBuTNIR

2

K
: ð17Þ

The dimensionless thermal diffusivity a depends on

both the melt transport properties and the liquid

crystalline properties. In this study, we use the range

1(a(105. b is defined as the ratio of short range order

elasticity to long range order elasticity [20], and in this

study we use b5104 to be consistent with prior

published theoretical work [20]. Furthermore, these

values allow us to fulfill the objectives listed in the

introduction.

The material physical properties and the melt

spinning process parameters used in this model are

shown in tables 1 to 3. The values for K, K5, and K6 are

obtained by assuming a ratio of L2/L1, which is in the

same range as published theoretical work [20–23], since

no experimentally determined values can be found for

them. The absolute values of the three elastic constants

are of the order of 10212 N [24]. Furthermore, the elastic

constants fulfill the constitutive hypothesis set by the

following conditions [34]:

L1§0 and L1z
2

3
L2§0 ð18 a; bÞ

Lastly, according to equations (6 b, c), L2,0 is required

for disc-like molecules.

The initial and boundary conditions are as follows:

Ti~TS at t~0, {RƒxƒR, {RƒyƒR ð19 aÞ

hi~hozge at t~0, {RƒxƒR, {RƒyƒR ð19 bÞ

S~0:25z0:75 1{
8TS

9TNI

� �1
2

at t~0, {RƒxƒR, {RƒyƒR

ð19 cÞ

T~TC at t > 0, x2zy2~R2 ð19 dÞ

h~hb at t > 0, x2zy2~R2 ð19 eÞ

S~0:25z0:75 1{
8TC

9TNI

� �1
2

at t > 0, x2zy2~R2 ð19 f Þ

where TS is the fibre spinning temperature, TC is the

cooling air temperature, and TNI is the nematic–

isotropic phase transition temperature. Values for these

temperatures are listed in table 2.

The initial condition used in this paper attempts to

mimic reality by including thermal fluctuations in the

director orientation. This is done by equation (19 b),

where ho is the average director orientation inherited

from upstream. e is a random number determined using

a standard random number generator and is within the

range 0,e,1, and g is a factor that controls the

magnitude of the fluctuation. In this study, we use

g50.5. The choice of the algebraic operation ¡ is

determined randomly by using a random number

generator with a different seed than that used to

generate e. If the random number generated is less than

0.5, the sign is negative; otherwise, it is positive.

The realistic boundary conditions used in this study

represent two typical surface anchoring behaviours of

Table 1. Elastic constants.

K~9L1z
9
2

L2 30.0610212 N

K5~
3
2

L1z
1
4

L2 6.0610212 N

K6~
3
4

L2 21.5610212 N

Table 2. Melt spinning parameters.

Parameter Value/K Ref.

TS (fibre spinning temperature) 600 [1]
TC (cooling air temperature) 373 [1]
TNI (nematic–isotropic transition

temperature)
725 [11]

Table 3. Physical properties for carbon fibres.

Property Value Ref.

R (fibre radius) 5.561026 m [1]
r (mesophase pitch density) 2000 kg m23 [1]
Cp (heat capacity) 1250 J kg21 K21 [3]
kth (thermal conductivity) 7.5 W m21 K21 [4]
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mesophase pitch molecules during the fabrication of

carbon fibres. One boundary condition represents the

case where the discotic liquid crystalline molecules are

oriented with the aromatic rings perpendicular to the

spinneret. This is obtained by setting the directors,

which are perpendicular to the discotic molecules, at

hb50. Another possible boundary condition for the
director field is where the discotic liquid crystalline

molecules are aligned parallel (i.e. tangential) to the

spinneret surface. This is represented in the model by

setting the director orientation angles at the spinneret

surface to be 90u, i.e. hb5p/2 radians. The director

initial average angles and boundary orientations ho and

hb used in the simulation for this paper are listed in

table 4. These values enable us to achieve the objectives
stated earlier.

In summary, the dependent variables are the dimen-

sionless temperature T*, the scalar order parameter S

and director orientation h. The independent variables

are the dimensionless lengths x* and y*, and the

dimensionless time t*. Equations (15 a–c) are solved

numerically with the dimensionless initial and boundary

conditions given by equations (A3) in the Appendix.
The Galerkin finite element method is used with 300

quadrilateral elements and isoparametric mapping. The

time integrator is the first order Euler predicator–

corrector method, and the Newton–Raphson method is

used for solving the system of non-linear algebraic

equations.

3. Results and discussion

This section presents and discusses representative

numerical solutions to equations (15 a–c) and (A3 a–f).

We begin by showing the time evolution of the

molecular field resulting from computer simulation
where a5103 and b5104. Then the temperature and

the scalar order parameter spatial profiles for a5103

and b5104 are presented. This is followed by a

discussion on the effect of the dimensionless thermal

diffusivity a on the thermal relaxation phenomenon. We

conclude this section with a discussion on how the

dimensionless thermal diffusivity a affects the structure

development and texture formation in carbon fibres.

Figure 2 shows the structure development and texture
formation across the mesophase fibre when a5103 and

b5104 for case 1 (first column), and case 2 (second

column) at the following dimensionless times t*: (a) 0.0,

(b) 0.01, (c) 0.016, and (d) 0.05. The short line segments

represent the edges of the discotic molecules, and are

obtained by noting that a director is normal to the disc-

like molecule. The first column shows that, under the

initial and boundary conditions restricted by case 1, the

molecules go from a randomly aligned state to a quasi-

onion state, and finally evolve into a perfectly con-

centric (i.e. onion) structure. In contrast, the second

column shows that under the restrictions from case 2,

the molecules start from a randomly aligned state to a

zig-zagged radial texture, eventually evolving into a

perfectly radial structure. The scientific visualizations of

the fibre cross-sectional textures plotted from the

computer simulations indicate that the mesophase pitch

based carbon fibre texture formation is a combination

of mode (radial or onion) selection and structure

development. The mode selection between the radial

and onion textures depends on the mesophase pitch

textures inherited from the upstream processes and

surface anchoring behaviours of mesophase pitch

molecules. This is consistent with the experimental

observations reported by Hamada et al [38]. They found

that the transverse textures of mesophase fibre could be

controlled by changing the pitch flow conditions at the

upper portion of the spinneret during melt spinning.

Wang and Rey [39] also predicated that fixed arbitrary

surface orientation of mesophase pitch molecules affects

the fibre textures. Lastly, figure 2 shows that the fibre

textures evolve from stressed high energy states to

structures with minimal distortion Frank elastic free

energy at steady state.

Figure 3 is a plot of the stored dimensionless Frank

elastic free energy F�d versus dimensionless time t*. The

two-dimensional dimensionless form of F�d may be

obtained using equation (5) and is expressed as:

F�d~
1

4

ðð
S2 Lh

Lx�
z

Lh

Ly�

� �2

dx dy: ð20Þ

In order to characterize the time evolution of the

molecular reorientation from the totally random

oriented state to the well-defined structures at steady

state, we define td and to as the time required for the

molecules to reorient such that the Frank elastic free

energy F�d decreases by 86.5% and 98%, respectively.

For this case, td50.016 and to50.05. This figure shows

that the Frank elastic free energy F �d evolution goes

through three stages: fast, intermediate, and weak

relaxation. The three relaxation stages are consistent

with the texture development exhibited in figure 2. In

the fast relaxation stage, corresponding to t*,0.016 (or

td) in figure 2, the molecules are initially randomly

Table 4. Auxiliary conditions.

Orientation

Angle/rad

Case 1 Case 2

Initial director average orientation, ho ho~
p
2

ho50

Boundary director orientations, hb hb~
p
2

hb50
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oriented which leads to a strained texture. This initial

texture stores the greatest-level distortion free energy,

which is the driving force for the fast relaxation rate for

t*,td. In stage 2, corresponding to 0.016 (or

td),t*,0.05 (or to) in figure 2, the Frank free energy

F �d decreases from 13.5% to 2% of its initial value; the

molecules form well defined structures at the end of

this time period. In the final weak relaxation stage,

corresponding to t*.0.05 (or to) in figure 2, the residue

of the Frank elastic free energy F�d is the small driving

force to reorient the molecules into the onion or radial

textures. In summary, the director relaxation phenom-

ena can be well explained using the Frank elastic free

energy theory. Discotic nematics are elastic materials,

where energy is stored by orientational strains. The

driving force for the texture development from a

Figure 2. Typical relaxation phenomena for molecular orientation for the case a5103 and b5104, across fibre transverse section at
the following dimensionless times t*: (a) 0.0, (b) 0.01, (c) 0.016 and (d ) 0.05.
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randomly aligned texture to well defined textures (such

as the radial and onion textures) is the minimization of

the stored Frank elastic free energy.

Figure 4 shows the two-dimensional relaxation phe-

nomena of the temperature profile for the case when

a5103 and b5104 at the following dimensionless times

t*: (a) 0.02, (b) 0.03, (c) 0.04, and (d ) 0.32. Figure 4

shows typical thermal diffusion phenomena along the

fibre radial direction. The fibre exits the spinneret at

spinning temperature TS5600 K, and is suddenly

exposed to cooling air temperature at TC5373 K. It is

assumed that there is perfect thermal contact between

the cooling air and the mesophase pitch. As expected,

the two-dimensional temperature spatial profile

becomes uniform at long times (i.e. steady state).

Figure 5 shows the two-dimensional relaxation phe-

nomena of the scalar order parameter S for the case

when a5103 and b5104 at the following dimensionless

times t*: (a) 0.02, (b) 0.03, (c) 0.04, and (d ) 0.32. It

shows that the scalar order parameter S evolution is

Figure 3. Time evolution of the dimensionless Frank elastic
free energy F�d for the case a5103 and b5104. td and to are
defined as the time required for the molecules to reorient such
that the Frank elastic free energy F�d decreases by 86.5% and
98%, respectively.

Figure 4. Typical relaxation phenomena of the temperature profile for the case a5103 and b5104 at the following dimensionless
times t*: (a) 0.02, (b) 0.03, (c) 0.04 and (d) 0.32.
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consistent with that of the temperature profile. This

may be explained using the following temperature

dependency of the scalar order parameter at homo-

geneous equilibrium [34]:

Seq~0:25z0:75 1{
8

3U

� �1
2

ð21Þ

where U53TNI/T. For an isotropic phase U,8/3, while

for a nematic phase U.3 [35]. For this model, nematic

potential U53TNI/T is inhomogeneous due to the

temperature gradient across the fibre radius. The scalar

order parameter S decreases as temperature increases

and reaches steady state simultaneously with the

temperature profile.

Figure 6 is a plot of the time evolution of the

molecular free energy F�S for the case when a5103 and

b5104, which was calculated by integrating equation (7)

over the fibre cross-section area. Figure 6 indicates that

F �S decreases with time, and reaches steady state at the

same time as the spatial profiles of temperature and the

scalar order parameter (see figures 4 and 5). The time
when F�S decreases to the steady state value is denoted as

the thermal relaxation process steady state time ta. For

this case, the plot shows ta50.32, and is consistent with

the time required for temperature T and the scalar order

parameter S to reach steady state in figures 4 and 5.

Figure 7 is a plot of the dimensionless times td, to and

ta versus thermal diffusivity a. This figure is used

to display the effect of the dimensionless thermal

Figure 5. Typical relaxation phenomena of the scalar order parameter profile for the case a5103 and b5104 at the following
dimensionless times t*: (a) 0.02, (b) 0.03, (c) 0.04 and (d ) 0.32.
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diffusivity a on mesophase pitch-based carbon fibre

texture formation and structure development. The

slanted dashed line indicates that the thermal relaxation

steady state time ta decreases monotonically with

dimensionless thermal diffusivity a. This means that

the time for S and T to reach steady state decreases as a

increases. The reason for this phenomenon is that the

dimensionless thermal diffusivity is the factor that

controls the rate of heat transfer between the mesophase

pitch and the cooling air, see equation (9), i.e. the rate of

heat transfer increases with a. The two solid near-

horizontal lines represent the dependences of the

dimensionless director reorientation times to and td

versus the dimensionless thermal diffusivity a. The

nearly flat lines show that the dimensionless thermal

diffusivity a has little effect on the director field

relaxation. The reason for this fact is that the relaxation

rate of f �d is a function of elastic constants and not a

function of a. The dynamic behaviour of the director

reorientation is governed by equation (15 b) where the

right hand side has eight terms. The first term, the

second term and the last six terms are obtained,

respectively, from f �e , f �d and f �C. The simulation results

indicated that, compared with Frank elastic free energy,

f �e and f �C induced by interaction between S and n

spatial gradients are negligible. Therefore, the effect of

the first term and the last six terms on the director

reorientation in equation (15 b) can be neglected.

Consequently, the time evolution of the director field

in the two-dimensional study can be expressed as:

{
Lh

Lt�
~k�2

L2h

Lx�2
z

L2h

Ly�2

 !
: ð22Þ

Equation (22) shows that the relaxation of director field

is not affected by the thermal diffusivity because the

dimensionless elastic function k�2 is related only to

Landau elastic constants, see equation (A2 b). The other

seven terms of equation (15 b) have little effect on the

director evolution. This leads to the director reorienta-

tion behaviour being nearly independent of the scalar

order parameter S and temperature T fields.

To characterize the thermal diffusivity effect on the

structure development and texture formation, we define

ao as the value of a at the cross-over point between ta

and to; the value at the cross-over point between ta and

td is denoted as ad. As discussed above, ta may be taken

as the time for the temperature T and the scalar order

parameter profile S spatial profiles to reach steady state.

Furthermore, to and td may be taken as the time for the

liquid crystal molecule spatial profile to reorient to

within 13.5% and 2%, respectively, of its steady state

profile. High value of a indicates higher viscosity, lower

elasticity and a fast cooling rate; low value of a
represents lower viscosity, higher elasticity and a slow

cooling process.

For a.ad, the plot shows process time ta is less than

reorientation times td and to. This means there is little

time available for discotic molecules to rotate. This

leads to a partially aligned texture depicted in

figure 2 (b). For ao,a,ad, figure 6 indicates td,ta,to.

When a is between these values, the molecules will have

more time to reorient into the well developed textures

(i.e. radial and onion textures), which are exhibited in

figure 2 (c). For a,ao, the plot shows ta.td and to. This

means the reorientation time provided by the thermal

relaxation process for molecules to rotate is longer than

the time that the molecules require to reorient to well

Figure 6. Time evolution of the dimensionless molecular free
energy F�S for the case a5103 and b5104. ta is the time for the
molecular free energy to reach steady state.

Figure 7. The effect of the thermal diffusivity a on the
thermal relaxation. The dashed line represents the thermal
relaxation time scale versus a. The two solid lines represent the
molecule reorientation time scales versus a. ao is defined as the
cross point between to and ta, and ad is the cross point
between td and ta.
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developed radial or onion textures as shown in

figure 2 (d).

4. Conclusion

The Ericksen and Landau–de Gennes continuum

theories were used in this paper to study numerically

the structure development and texture formation in a

discotic uniaxial nematic mesophase pitch-based carbon

fibre after cessation of extensional flow. The selection

between the radial and onion textures depends on the

surface orientation angle in the mesophase pitch upon

exiting the spinneret. Moreover, the resulting texture
depends on the times required for director reorientation

and heat transfer. The structure development is affected

by the cooling rate, pitch melt viscosity and elasticity.

High thermal diffusivity caused by higher viscosity and

fast cooling inhibits the liquid crystal molecular

reorientation and limits the structure development.

Lower viscosity and slow cooling provide more time

for liquid crystal molecular reorientation and allow
fibre cross-sectional structure to develop into well

defined textures. These simulation results provide

additional information on molecular orientation during

post melt spinning process, which helps to improve the

product properties and to reduce the post treatment

process cost.
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Appendix

The relationships for the dependency of the Leslie

viscosities on the scalar order parameter S are as follows

[34]:

aS
1 ~bm

1 S2{
cS

2

� �2

cS
1

z
bS

1

� �2

bS
2

ðA1 aÞ

aS
2 ~

1

2
cS

2 {cS
1

� �
ðA1 bÞ

aS
3 ~

1

2
cS

2 zcS
1

� �
ðA1 cÞ

aS
4 ~bm

4 z
2

3
bS

2 1{Sð Þz 2

9
bm

3 1{Sð Þ2z 1

9
bm

1 1{Sð Þ2 ðA1 dÞ
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aS
5 ~

1

3
bm

1 S 1{Sð Þzbm
2 SzaS

2

cS
2

cS
1

ðA1 eÞ

aS
6 ~cS

2 zaS
5 ðA1 f Þ

bS
1 ~bS

2

a3za2

a3{a2
2Sz1ð Þ 1{Sð Þ ðA1 gÞ

bS
2 ~

a3{a2

3z6S2
ðA1 hÞ

cS
1 ~S2 a3{a2ð Þ ðA1 iÞ

cS
2 ~cS

1

a3za2ð Þ
a3{a2ð Þ

2zS

3S
ðA1 jÞ

bm
1
~a1za2{a3z4

a2a3

a2{a3
ðA1 kÞ

bm
2 ~

1

2
a2 ðA1 lÞ

bm
3 ~

1

2
a2za5ð Þz2

a2a3

a2{a3
ðA1 mÞ

bm
4 ~a4: ðA1 nÞ

The elastic functions {ki}, i51, …, 18, in

equations (14 b, c) are defined as follows:

k1~{
K

S
ðA2 aÞ

k2~{
1

2
K ðA2 bÞ

k3~
1

S2
K6 cos 2hð Þ ðA2 cÞ

k4~{
1

S2
K6 1z cos2 h
� �

ðA2 dÞ

k5~
1

S2
K6 1z sin2 h
� �

ðA2 eÞ

k6~{
1

S
K6 1z cos2 h{ sin h cos h
� �

ðA2 f Þ

k7~
1

S
K6 1z sin2 h{ sin h cos h
� �

ðA2 gÞ

k8~
1

S
K6 sin 2hð Þ ðA2 hÞ

k9~
1

2
KS 3z6S2
� �

ðA2 iÞ

k10~{K5 3z6S2
� �

ðA2 jÞ

k11~3K6 3z6S2
� �

sin h cos hz sin2 h
� �

ðA2 kÞ

k12~{3K6 3z6S2
� �

sin h cos hz cos2 h
� �

ðA2 lÞ

k13~{K6 3z6S2
� �

sin h cos hz cos2 h
� �

ðA2 mÞ

k14~{K6 3z6S2
� �

sin h cos hz sin2 h
� �

ðA2 nÞ

k15~K6S 3z6S2
� �

1z sin h cos hz sin2 h
� �

ðA2 oÞ

k16~{K6S 3z6S2
� �

1z sin h cos hz cos2 h
� �

ðA2 pÞ

k17~K6S 3z6S2
� �

sin 2 hð Þz cos 2 hð Þ½ � ðA2 qÞ

k18~K6S 3z6S2
� �

sin 2 hð Þ{ cos 2 hð Þ½ � ðA2 rÞ

where the following relations between elastic constants

K, K5 and K6 and Landau coefficients have been used:

K~9L1z
9

2
L2 ðA2 sÞ

K5~
3

2
L1z

1

4
L2 ðA2 tÞ

K6~
3

4
L2: ðA2 uÞ

The dimensionless initial and boundary conditions are

as follows:

T�i ~TS=TNI at t�~0, {1ƒx�ƒ1, {1ƒy�ƒ1 ðA3 aÞ

hi~h0zge at t�~0, {1ƒx�ƒ1, {1ƒy�ƒ1 ðA3 bÞ

S~0:25z0:75 1{
8TS

9TNI

� �1
2

at t�~0, {1ƒx�ƒ1, {1ƒy�ƒ1

ðA3 cÞ

T�~TC=TNI at t� > 0, x�
2

zy�
2

~1 ðA3 dÞ

h~hb at t� > 0, x�
2

zy�
2

~1 ðA3 eÞ

S~0:25z0:75 1{
8T

9TNI

� �1
2

at t� > 0, x�
2

zy�
2

~1: ðA3 f Þ
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